No 120 - Answer

Use the following data (obtained on paired specimens) to calculate the percentage of filtered urea reabsorbed by the renal tubules:

Plasma urea 7.5 mmol/L Urine urea 360 mmol/L Plasma creatinine 150 umol/L Urine creatinine

Let: $U_{Ur} = \text{urine urea concentration}$ 360 mmol/L P_{Cr} = plasma creatinine concentration 150 µmol/L

 U_{Cr} = urine creatinine concentration $12 \text{ mmol/L} = 12,000 \mu \text{mol/L}$

 P_{Ur} = plasma urea concentration

The fraction of filtered urea which is excreted i.e. FE_{Ur} is:

FE_{Ur} = Rate of urinary urea excretion Rate of urea filtration

Since: rate of urinary urea excretion = $U_{Ur} \times V$

where V = urine flow rate (L/min)

rate of urea filtration = $GFR \times P_{Ur}$

 $FE_{Ur} = U_{Ur} \times V$ GFR x P_{Ur}

GFR is unknown so use creatinine clearance as the nearest estimate available:

$$GFR = \frac{U_{Cr} \times V}{P_{Cr}}$$

Substitute for GFR into the expression for FEUr:

$$FE_{Ur} = \frac{U_{Ur} \times V \times P_{Cr}}{U_{Cr} \times V \times P_{Ut}}$$

ACB News | Issue 577 | May 2011

Practice FRCPath Style Calculations | 13

Since the V terms cancel this becomes:

$$FE_{Ur} = U_{Ur} \times P_{Cr}$$

$$U_{Rr} \times P_{Ur}$$

Substitute these values to calculate FE_{LIr} remembering to multiply the urine creatinine by 1000 to convert it to µmol/L (the same units as used for plasma creatinine):

$$FE_{Ur} = \frac{360 \times 150}{12000 \times 7.5} = 0.6$$

If 0.6 of filtered urea is excreted then 1 - 0.6 = 0.4 of filtered urea is reabsorbed.

Therefore percentage of filtered urea reabsorbed by tubules = 0.4 x 100 = 40%

Question 121

A patient in your local lipid clinic had a serum total cholesterol concentration of 7.2 mmol/L. He was treated with a statin; and 3 months later his serum cholesterol concentration is 6.0 mmol/L. Given that the controls for your cholesterol assay run standard deviations of 0.041, 0.062 and 0.094 mmol/L at 2.7, 4.3 and 6.7 mmol/L respectively, and that the intra-individual biological variation of serum cholesterol concentration is quoted as 5.4%, determine whether this represents a significant change in his serum cholesterol.

ACB West Midlands Region Scientific Meeting The Request - Report Cycle

Wednesday 8th June 2011

Research Park Conference Centre, Birmingham

Registration & Coffee Introduction and Welcome 10.00-10.40

10.45	Request – Report Cycle Overview	Dr Jonathan Kay
11.45	Requesting	Dr Rick Jones
12.30	Lunch	
Afternoon	Session	
13.30	Demand Management	Dr Owen Driskoll
14.10	Shared Care Pathway	Dr Nigel Lawson
14.50	Data Visualisation	Craig Webster
15.30	Pathology Reporting – The Patient Perspective	Neil Formstone
15.50	Pathology Reporting – Safety and Escalation	TBA
16.20	Close	

www.acbwm.org.uk