Deacon's Challenge No. 89 Answer

An adult male (body weight 82 Kg) produces a 24h urine collection with a total volume of 1.56 L and a creatinine concentration of 9.5 mmol/L. His plasma creatinine concentration (in a blood collected during the urine collection period) was 95 μ mol/L. Estimate the half life of plasma creatinine stating any assumptions that you make.

First calculate the elimination rate constant of creatinine (k_d) , which is the fraction of the total creatinine excreted per unit of time:

The rate of creatinine excretion is simply the total amount of creatinine in the urine collection divided by the collection period:

Rate of creatinine excretion (µmol/min)

(multiplication by 1,000 converts mmol/L to μ mol/L and multiplication by 60 converts the urine collection period from h to min).

Rate of creatinine excretion =
$$9.5 \times 1,000 \times 1.56 = 10.3 \mu mol/min$$

24 x 60

The total available creatinine is the plasma creatinine multiplied by its volume of distribution (V_d) :

Total available creatinine (
$$\mu$$
mol) = Plasma creatinine (μ mol/L) x V_d (L)

Assuming that creatinine is distributed throughout the ECF only, and that creatinine in the interstitial fluid is freely exchangeable with plasma and hence available for renal filtration then V_d is the ECF volume. Assuming that the body is 60% water and that one third of this is in the ECF, then:

ECF vol =
$$\frac{\text{Body wt (Kg) x 60\%}}{3}$$
 = $\frac{82 \times 60}{100 \times 3}$ = 16.4 L

September 2008 • ACB News Issue 545

Practice MRCPath Style Calculations Practice MRCPath Style

Total available creatinine = 95 x 16.4 = 1558
$$\mu$$
mol So that k_d = $\frac{10.3}{1558}$ = 0.00661 min^{-1}

 \textbf{k}_{d} is related to the half-life $(\textbf{t}_{1/2})$ by the expression: \textbf{k}_{d} = 0.693 $t_{1/2}$

Therefore:
$$t_{1/2} = \underbrace{0.693}_{k_d} = \underbrace{0.693}_{0.00661} = 105 \text{ min}$$

This problem can also be solved by employing the relationship between clearance (Cl), k_d and V_d frequently used in pharmacokinetics:

$$k_d = C$$

Question 90

A plasma sample has a total CO₂ content (TCO₂) of 28 mmol/L. If the pH is 7.4, estimate the pCO₂ (in kPa). (The pKa for this buffer system is 6.1, the millimolar solubility coefficient of CO₂ (in kPa) is 0.225).

MRCPath, Spring 2008