Deacon's Challenge No 185 - Answer

A new drug (A) is inactivated by a deaminase in plasma to form metabolite (B). A rare deficiency in the enzyme can easily result in toxic plasma concentrations of the drug. To assay the enzyme 10 uL of plasma was added to 2 mL of buffer then the reaction initiated by adding 100 uL of substrate (A). The reaction was monitored by following the change in absorbance in a cell with a 1cm path-length. Unfortunately both the product and substrate absorb strongly at the wavelength used with the following molar absorptivities:

Drug (A)	=	3.0 x 10⁵ L.mol⁻¹.cm⁻¹
Metabolite (B)	=	1.2 x 10 ⁵ L.mol ⁻¹ .cm ⁻¹

Calculate the enzyme activity (in µmol /min/L plasma) for an initial rate of change in absorbance of -0.021/min

For each species (A or B) their absorbance (A) is given by:

A = a x b x c

where $a = \text{molar absorptivity in L.mol^{-1}.cm^{-1}}$, c = concentration in mol/L and b is the path-length in cm

The change in absorbance (ΔA) is similarly related to the change in concentration (Δc):

$$\Delta A = a \times b \times \Delta a$$

Since the molar absorptivity of A is greater than B the absorbance will decrease as the reaction proceeds.

Therefore the net change in absorbance will be due to the absorbance increase due to the formation of B minus the loss in absorbance as an equivalent amount of A is consumed. Since the rate of absorbance change due to each species is given by $a \ge \Delta c$ (ignoring b since it is unity) the following expression can be written:

 $\operatorname{net} \Delta A = (a_{B} \times \Delta c_{B}) + (a_{A} \times \Delta c_{A})$

Since each mole of A is converted to B it follows that $\Delta c_A = -\Delta c_B$ therefore:

net $\Delta A = (a_B \times \Delta c_B) + \{a_A \times (-\Delta c_B)\} = \Delta c_B (a_B - a_A)$

which can be rearranged to:
$$\Delta c_{B} = \frac{\text{net } \Delta A}{a_{B} - a_{A}}$$

Substituting for net ΔA , a_A and a_B and solving for Δc_B :

 $\frac{-0.021}{(1.2 \times 10^5) - (3.0 \times 10^5)} = \frac{-0.021}{10^5(1.2 - 3.0)} = \frac{-0.021}{-1.8 \times 10^5} = 1.17 \times 10^{-7} \text{ mol/L/min}$ Δc_{B} =

ACB News | Issue 642 | October 2016

Practice FRCPath Style Calculations | 17

This is the rate of formation of B in 1 L of reaction mixture not plasma. Therefore allow for dilution of plasma in the assay mixture by multiplying by the total reaction volume (0.01 mL + 2.0 mL + 0.1 mL = 2.11 mL) and dividing by the plasma volume (0.010 mL). Finally, multiply by 1,000,000 to convert the rate from mol/L/min to µmol/L/min):

Enzyme activity = 1.17 x 1⁰⁻⁷ x 2.11 x 10⁶ = 25 µmol/L/min (to 2 sig figs) 0.01

Question 186

- Two solutions (A and B) have the following compositions: 6g anhydrous sodium dihydrogen orthophosphate in 500 mL water
- B: 7.1g anhydrous disodium hydrogen orthophosphate in 500 mL water
- 50 mL of A is mixed with 50 mL B and the measured pH is 6.82. Calculate the pKa₂. a)

ScheBo • Biotech – experts in faecal elastase

ScheBo • Pancreatic Elastase 1 Stool Test ELISA Provides objective evidence of pancreatic exocrine function

The only faecal elastase test which uses monoclonal antibodies – no need for patients to interrupt enzyme replacement therapy

- Just 60 minutes total incubation time the fastest faecal elastase ELISA test
- ScheBo[®] Master Quick-Prep™ device available for faster and more pleasant sample preparation or use the conventional weighing method
- Reagent-complete, quantitative ELISA
- · Manual test or can be automated

Over 15 years of experience in U.K. hospital laboratories

ScheBo® • Pancreatic Elastase 1 Quick™ - another innovative 'faecal elastase' test from ScheBo - Biotech Reliable, economical and quick - highly suitable for occasional requests

Ivor Smith, ScheBo - Biotech UK Ltd, PO Box 6359, Basingstoke, RG22 4WE Tel: 01256 477259 Fax: 01256 327889 email: i.smith@schebo.co.uk www.schebo.co.uk ScheBo®- Biotech UK Limited is a corporate member of the ACB