Deacon's Challenge

No 99 - Answer

Stating any assumptions you make calculate the pH of the following solutions:

- 0.01 M NaOH
- A solution obtained by mixing 10 mL of solution a) with 10 mL of solution b)

(The ionic product of water (K_W) is 1.0 x 10⁻¹⁴ and the dissociation constant of lactic acid (K_a) is 1.38 x 10⁻⁴ mol/L.)

a) By definition
$$K_W = [H^+] \times [OH^-] = 1.0 \times 10^{-14}$$

Taking -log₁₀ of all terms gives:

$$-\log_{10} [H^+] + (-\log_{10} [OH^-]) = -\log_{10} (1.0 \times 10^{-14})$$

Which simplifies to:

Assuming complete dissociation of NaOH, [OH-] = 0.01 mol/L

pOH =
$$-\log_{10} [OH^{-}] = -\log_{10} 0.01 = -(-2) = 2$$

pH = 14 - pOH = 14 - 2 = 12

The dissociation of a weak acid (HA) can be written

and its dissociation constant (K_a) is given by:

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

Ignoring the minute contribution to [H+] from the dissociation of water, $[A^-] = [H^+]$ so that:

$$K_a = \frac{[H^+]^2}{[HA]}$$

A further approximation for a weak acid is that only a minute proportion is dissociated so that [HA] = [HA] $_{Total}$ and the value for K_a can be written:

$$K_a = \frac{[H^+]^2}{[HA]_{Total}}$$

which can be rearranged to the following useful expression:

$$[H^+] = \sqrt{(K_a \times [HA]_{Total})}$$

ACB News | Issue 555 | July 2009

Practice FRCPath Style Calculations | 9

[H+] =
$$\sqrt{(1.38 \times 10^4 \times 0.02)}$$
 = $\sqrt{(2.76 \times 10^4)}$ = 1.66 x 10³ mol/L
and pH = $-\log_{10}[H+]$ = $-\log_{10}(1.66 \times 10^3)$ = -(-2.78) = 2.78

(Without assuming that [Lactl] $_{Total}=\mbox{[LactH]}$ the solution of the resulting quadratic gives a similar answer of $\mbox{ 2.80)}.$

By mixing equal volumes of solutions a) and b) the resulting concentrations are half the initial values i.e. [NaOH] = 0.005 mol/L and [Lact]_{Total} = 0.01 mol/L.

NaOH neutralizes half of the lactic acid :

NaOH + LactH
$$\longrightarrow$$
 Lact- + H₂O

so that the new concentrations are:

[LactH] =
$$0.01 - 0.005 = 0.005 \text{ mol/L}$$

[Lact-] = $0 + 0.005 = 0.005 \text{ mol/L}$

By definition when the concentrations of the acid and salt forms of a buffer pair are equal (so that [salt]/[acid] = 1 and $\log_{10}1 = 0$) the pH is equal to pKa.

Therefore pH = pKa = $-\log_{10} Ka = -\log_{10} (1.38 \times 10^{-4}) = -(-3.86) = 3.86$

Ouestion 100

A patient is infused with a drug at the rate of 100 $\mu g/m$ in until a steady state plasma concentration of 100 $\mu g/dL$ is achieved.

Calculate the clearance of the drug in mL/min.

Comment on your answer.