No 143 - Answer

The distribution of genotypes seen in Chemist's Disease is as shown. Calculate the frequency of the two alleles CCR-5 and ccr-5, and state whether these frequencies accord with the Hardy-Weinberg equilibrium.

Number of individuals
568
134
2
704

FRCPath, Spring 2012

```
No of CCR-5 alleles
                         = (2 x CCR-5/CCR-5) + CCR-5/ccr-5 = (2 x 568) + 134 = 1270
No of ccr-5 alleles
                        = (2 x ccr-5/ccr-5) + CCR-5/ccr-5 = (2 x 2) + 134 = 138
                        = 1270 + 138 = 1408 (i.e. same as 2 x 704)
Total alleles
Frequency of CCR-5 allele = <u>CCR-5 alleles</u> = <u>1270</u> = 0.902 (i.e. 90.2%)
Total alleles 1408
Frequency of ccr-5 allele = <u>ccr-5 alleles</u> = <u>138</u>
Total alleles 1408
                                                               = 0.098 (i.e. 9.8%)
```

Next calculate the expected numbers of the three genotypes (using these frequencies) if the Hardy-Weinberg equilibrium applies (rounded to whole numbers):

```
Expected CCR-5/CCR-5 = CCR-5 frequency<sup>2</sup> x Total = 0.902<sup>2</sup> x 704 = 573
Expected CCR-5/ccr-5 = 2 \times CCR-5 frequency x ccr-5 frequency x Total
                         = 2 \times 0.902 \times 0.098 \times 704 = 124
Expected ccr-5/ccr-5 = ccr-5 frequency<sup>2</sup> x Total = 0.098^2 x 704 = 7
```

Finally carry out a chi-squared test to compare the numbers of expected (E) and observed (O) genotypes:

Chi-squared	$= \Sigma (O - E)^2/E$			
Genotype	Observed (O)	Expected (E	(O - E)	(O - E) ² /E
CCR-5/CCR-5	568	573	-5	0.0436
CCR-5/ccr-5	134	124	10	0.8065
ccr-5/ccr-5	2	7	-5	3.5714
			Total (chi-squared)	= 4.4215

ACB News | Issue 600 | April 2013

Practice FRCPath Style Calculations | 13

Normally the degrees of freedom would be n-1 = 3-1 = 2. However, since the observed values were used to calculate the gene frequencies which in turn were used to calculate the expected values, a further degree of freedom is lost leaving only one.

From tables the probability (P-value) of obtaining a chi-squared value of 4.42 if there was no real difference between the observed and expected values (i.e. the observed data obeyed the Hardy-Weinberg equilibrium) is between 0.01 and 0.05. Therefore at the 5% level of probability the observed frequencies are NOT in accord with the Hardy-Weinberg equilibrium.

Question 144

You are provided with brief details of a method to measure peptide-X. If the mean result of assaying a redissolved extract of peptide-X gives a result of 8 fmol/tube, calculate the concentration of peptide-X in the original sample, expressing the answer in appropriate

Immunoassay method for peptide-X: Extract 1 mL of serum with 5 mL of methanol. Evaporate methanol to dryness under nitrogen, and redissolve residue in 250 µL of

assay burlet. Assay aliquots (100 μ L) of this solution by immunoassay in duplicate. Calibrate the assay against non-extracted standards to give a result in terms of femtomoles (fmol) per assay tube.

Average expected recovery for peptide-X extraction is 80%.

