## Deacon's Challenge No. 33 Answer

An assay mixture for the measurement of lactate dehydrogenase constituted 2.7 mL of buffered NADH and 100  $\mu$ L of serum. The reaction was started by adding 100  $\mu$ L of sodium pyruvate. The absorbance change over 5 minutes was 0.150 when measured in a 0.5 cm light path at 340 nm. Assuming the molar absorbtivity of NADH at 340 nm is 6.30 x 10<sup>3</sup> Lmol<sup>-1</sup> cm<sup>-1</sup>, calculate the enzyme activity.

LDH activity = µmol substrate consumed/min/L plasma

The reaction is monitored by following the fall in absorbance at 340 nm due to the oxidation of NADH as pyruvate is consumed:

$$CH_3CO.COO^- + NADH + H^+ \rightarrow CH3CH(OH)COO^- + NAD^+$$

First calculate the amount of NADH oxidized over the reaction period of 5 min:

To covert from mol to mmol multiply by 1,000,000, and from 5 min to 1 min divide by 5:

$$\Delta \text{ [NADH]} = \underbrace{0.150 \text{ x } 1,000,000}_{6.30 \text{ x } 103 \text{ x } 0.5 \text{ x } 5} \qquad \mu \text{mol/L/min}$$

This is the LDH activity per litre of reaction mixture not plasma.

Since 100  $\mu$ L of plasma was diluted to a final volume of 2.9 mL (i.e 100  $\mu$ l plasma + 2.7 ml NADH/buffer + 100  $\mu$ L of substrate) the activity (mmol/min/L plasma) is obtained by multiplying this result by 2.9 and dividing by 0.1:

LDH activity = 
$$\frac{0.150 \text{ x } 1,000,000 \text{ x } 2.9}{6.30 \text{ x } 10^3 \text{ x } 0.5 \text{ x } 5 \text{ x } 0.1}$$
 = 276 mmol/min/L

## Question No. 34 \*\*Christmas Special\*\*

What is the pH of a  $1.0 \times 10^{-8}$  molar solution of hydrochloric acid? £10 book token for the first "correct" answer together with a convincing explanation received: allan.deacon@bedhos.anglox.nhs.uk