Deacon's Challenge No. 22 Answer

A patient's arterial blood results showed a P_{O2} of 12 kPa, haemoglobin concentration of 150 g/L and an oxygen saturation of 98%. Calculate the total oxygen content of his blood in mL/L.

MRCPath May 1997

Total
$$O_2$$
 = O_2 bound to Hb + Dissolved O_2

$$O_2 \text{ content (mL/L)} = \underbrace{(Hb \times S_{02} \times 1.39)}_{100} + (P_{O2} \times 0.23)$$
where P_{O2} = oxygen tension in kPa = 12
Hb = haemoglobin concentration in g/l = 150
$$S_{O2}$$
 = oxygen saturation (i.e. % Hb present as HbO₂) = 98

Substituting these values:

$$O_2$$
 = $\frac{(150 \times 98 \times 1.39)}{100}$ + (12×0.23)
= 204.3 + 2.8
= 207 mL/L

Without using the above equation an approximate answer can be calculated as follows:

The majority of oxygen is bound to haemoglobin, therefore ignore the dissolved oxygen component.

Convert Hb to molar concentration (MW of Hb approx 65000)

Hb =
$$150 \text{ g/L} = 150 \text{ g/L} = 0.00231 \text{ mol/L}$$

Each molecule of haemoglobin contains 4 oxygen binding sites and we are told these are 98% saturated, therefore:

$$O_2$$
 content = $0.00231 \times 4 \times 98 = 0.00906 \text{ mol/L}$

The oxygen content can be converted to volume using the gram molecular volume of a gas (GMV):

GMV = 22.4 litres at STP (i.e. normal atmospheric pressure and
$$0^{\circ}$$
C)
O₂ content = 0.00906 x 22.4 = 0.203 L/L = **203 mL/L**

If necessary this volume could be converted to any other pressure or temperature using the gas laws.

Question No. 23

A five day faecal fat collection was homogenised and diluted to 1500 mL. A 10 mL aliquot of the homogenate was subjected to hydrolysis and the fatty acids were extracted. The volume of 0.05 M sodium hydroxide required to effect neutralisation was 22 mL. Calculate the fat excretion in mmol/24h.

MRCPath May 1995