Deacon's Challenge No. 90 Answer

A plasma sample has a total CO2 content (TCO2) of 28 mmol/L. If the pH is 7.4, estimate the pCO2 (in kPa). (The pKa for this buffer system is 6.1, the millimolar solubility coefficient of CO_2 (in kPa) is

MRCPath, Spring 2008

Plasma total CO₂ includes bicarbonate ions, dissolved CO₂, carbonic acid and various carbamino compounds. Contribution from the latter two is negligible so for practical purposes the components of total CO2 can be written:

$$[CO_2]$$
Total = $[HCO_3^-]$ + $[CO_2]_{dissolved}$

The dissolved carbon dioxide component can be obtained by multiplying the partial pressure for CO_2 (i.e. PCO_2) by its solubility coefficient (α):

$$[CO_2]_{dissolved} = \alpha PCO_2$$

 $[CO_2]_{Total}$ = $[HCO_3^-]$ + αPCO_2 Therefore

Which can be rearranged to give an expression for bicarbonate concentration:

$$[HCO_3^-]$$
 = $[CO_2]_{Total}$ - αPCO_2

The Henderson Hasselbalch equation for the CO₂/bicarbonate pair can be written:

pH = pKa +
$$\log_{10} \frac{[HCO_3^-]}{\alpha PCO_7}$$

Substituting $[HCO_3^-] = [CO_2]_{Total}$ - αPCO_2 gives a form of the Henderson Hasselbalch equation containing only pH and PCO_2 as variables:

pH = pKa +
$$\log_{10} \frac{[CO2]_{Total} - \alpha PCO_2}{\alpha PCO_2}$$

Substitute

pH = 7.4, [CO₂]_{Total} = 28 mmol/L and α = 0.225 and solve for PCO₂:

7.4 = 6.1 +
$$\log_{10} \frac{\text{(28 - 0.225 PCO}_2)}{\text{0.225 PCO}_2}$$

October 2008 • ACB News Issue 546

Practice MRCPath Style Calculations Practice MRCPath Style

This question was designed to test the candidates awareness that total $\lceil CO_2 \rceil$ is not exactly the same as [HCO₃-]. If they are assumed to be the same then the value for PCO2 comes out at 6.2 kPa.

Question 91

A patient attending a renal clinic for the first time has a serum creatinine concentration proposed to monitor his progress by measurement of plasma creatinine at each clinic and the average intra-individual CV of plasma creatinine is 7.7%, estimate the smallest significant fall in GFR (p<0.05) which can be detected by plasma creatinine

MRCPath, Spring 2008