ACB spreadsheet verification: bias estimate from EQA material

Ed Wilkes

This document describes the verification of the bias estimates from EQA material spreadsheet, written by Prof Anders Kallner, that performs calculations for the assessment of bias between a given material and EQA materials (July 2018 version). Calculations performed by these spreadsheets were verified in an independent statistical software (the R statistical computing environment v3.4.1) by the author of this document. The R packages required to run this code are shown below. This code can be copied and pasted into an instance of R and, given the test data as input, reproduce the analysis in this document.

Required packages:

```
require(dplyr)
require(knitr)
require(mcr)
require(reshape2)
require(VCA)
```

Reading group data into R:

```
# Read in csv file: "2018-07 ACB Trueness (bias) from EQA - group test
data.csv"
df group <- read.csv(file.choose(), header = TRUE)</pre>
kable(df group)
sample mean sd n
     1
         3.4 0.3 23
     2
         1.9 0.3 24
     3
         6.6 0.5 23
     4 10.4 0.6 24
     5 10.9 0.8 23
     6 13.1 1.0 23
     7 20.2 1.5 24
     8 24.8 1.5 23
     9 31.2 1.6 22
    10 35.0 6.0 23
```

Check calculation of SEMs from group EQA values:

These are the data shown in column F, from cell 10 onwards.

df_group %>%

```
group_by(sample) %>%
mutate(sem = sd / sqrt(n)) %>%
kable
```

sample mean sd n sem

- 1 3.4 0.3 23 0.0625543
- 2 1.9 0.3 24 0.0612372
- 3 6.6 0.5 23 0.1042572
- 4 10.4 0.6 24 0.1224745
- 5 10.9 0.8 23 0.1668115
- 6 13.1 1.0 23 0.2085144
- 7 20.2 1.5 24 0.3061862
- 8 24.8 1.5 23 0.3127716
- 9 31.2 1.6 22 0.3411211
- 10 35.0 6.0 23 1.2510865

The calculated SEM values match those in the spreadsheet.

Reading sample data into R:

```
# Read in csv file: "2018-07 ACB Trueness (bias) from EQA - sample test
data.csv"
df sample <- read.csv(file.choose(), header = TRUE)</pre>
kable(df sample)
sample result_1 result_2 result_3 result_4 result_5 result_6
            3.3
                              3.7
                                       4.0
                                                3.2
                                                        2.5
      1
                     3.5
     2
            1.6
                     1.7
                              1.9
                                       1.5
                                                2.0
                                                        2.1
     3
            6.9
                     7.2
                              6.6
                                       6.7
                                                7.0
                                                        7.1
     4
           10.0
                     8.2
                              6.9
                                       7.2
                                                9.5
                                                        9.1
     5
            8.7
                     9.8
                              8.5
                                       8.9
                                                9.5
                                                        9.2
     6
           12.5
                    12.6
                             12.2
                                      12.8
                                              12.7
                                                       12.6
     7
           18.8
                    19.7
                             18.7
                                     19.0
                                              19.5
                                                       19.2
     8
           21.3
                    25.6
                             20.7
                                      26.5
                                              27.6
                                                       21.1
     9
           29.2
                    32.6
                             29.9
                                      30.0
                                              34.0
                                                       32.5
    10
           32.0
                    33.0
                             33.5
                                      36.0
                                              35.6
                                                       37.0
```

Check calculation of sample means, SDs, Z-scores, absolute and relative differences:

These are the data shown in columns S:W, from cell 10 onwards.

```
df_sample_sum <- df_sample %>%
  melt(id.vars = "sample") %>%
  group_by(sample) %>%
    summarise(n_sample = n()
```

<pre>,mean_sample = mean(value) ,sd_sample = sd(value)) %>%</pre>								
) %/% left_join(df_group, by = "sample") %>% mutate(z = (mean sample - mean) / sd								
<pre>,absolute_diff = mean_sample - mean ,relative_diff = (mean_sample - mean) / mean * 100</pre>								
) kable(df sample sum)								
sampl n_sampl mean_sampl sd_sampl mea e e e e n sd n z absolute_dif relative								relative_dif
e	e	e	e n	su	п	Z	f	f
1	6	3.366667 0.5125102	2 3.4	0. 3	2 3	- 0.111111 1	-0.0333333	-0.9803922
2	6	1.800000 0.2366432	2 1.9	0. 3	2 4	- 0.333333 3	-0.1000000	-5.2631579
3	6	6.916667 0.231660	7 6.6	0. 5	2 3	0.633333 3	0.3166667	4.7979798
4	6	8.483333 1.2608198	8 10.4	0. 6	2 4	- 3.194444 4	-1.9166667	- 18.4294872
5	6	9.100000 0.4939636	5 10.9	0. 8	2 3	- 2.250000 0	-1.8000000	- 16.5137615
6	6	12.566667 0.206559	1 13.1	1. 0	2 3	0.533333 3	-0.5333333	-4.0712468
7	6	19.150000 0.3937004	4 20.2	1. 5	2 4	0.700000 0	-1.0500000	-5.1980198
8	6	23.800000 3.1022572	2 24.8	1. 5	2 3	- 0.6666666 7	-1.0000000	-4.0322581
9	6	31.366667 1.9211108	8 31.2	1. 6	2 2	0.104166 7	0.1666667	0.5341880
10	6	34.516667 1.9600170) 35.0	6. 0	2 3	- 0.080555 6	-0.4833333	-1.3809524

All calculate values match those presented in the spreadsheet.

Check calculations of mean Z-scores and *t*-tests of results:

These are the data shown in cells R31:R38 and V31:39.

df_sample_sum %>%

```
summarise(n z = n())
            , mean z = mean(z)
            , sd z = sd(z)
            , sem z = sd(z) / sqrt(n z)
            ,t stat z = t.test(x = z)$statistic
            ,p value z = t.test(x = z)$p.value
            ,total_mean_group = mean(mean)
            ,total_sem_group = sd(mean) / sqrt(n z)
            ,total_mean_sample = mean(mean_sample)
            ,t stat = t.test(x = mean
                              ,y = mean_sample
                              ,paired = TRUE)$statistic
            ,p value = t.test(x = mean
                               ,y = mean sample
                               ,paired = TRUE)$p.value
            ) 응>응
 kable
          sd_z sem_z t_stat p_val total_mean total_sem_ total_mean_ t_stat p_val
n mean
                                                            sample
_Z
       _Z
                        _z ue_z
                                     _group
                                                 group
                                                                             ue
                     1.957 0.0819
                                                           15.10667 2.594 0.0290
1
         1.151 0.3642
  0.7131
                                       15.75
                                              3.648752
0
                 543
                             129
                                                                     275
          873
                                                                            094
     944
                       957
```

All calculated values match those in the spreadsheet.

Fit regression models and check results:

These are the data shown in cells B32:F33 and C34.

Deming:

```
# Fit Deming regression and get parameters
mcreg(x = df sample sum$mean
     ,y = df sample sum$mean sample
     ,error.ratio = 1
     , alpha = 0.05
     ,method.reg = "Deming"
     ,method.ci = "analytical")@para
##
                  EST
                         SE
                                         LCI
                                                  UCI
## Intercept -0.6645609 0.46189767 -1.7296988 0.400577
## Slope 1.0013478 0.02408191 0.9458148 1.056881
# EST = estimate of parameter
# SE = standard error of parameter
# LCI = lower confidence interval
# UCI = upper confidence interval
```

OLR:

```
# Fit OLR model
lm(df_sample_sum$mean_sample ~ df_sample_sum$mean)
##
## Call:
## lm(formula = df_sample_sum$mean_sample ~ df_sample_sum$mean)
```

```
##
## Coefficients:
## (Intercept) df_sample_sum$mean
## -0.6282 0.9990
# Get confidence intervals for above model
confint(lm(df_sample_sum$mean_sample ~ df_sample_sum$mean))
## 2.5 % 97.5 %
## (Intercept) -1.6908302 0.4345277
## df sample sum$mean 0.9436313 1.0544408
```

Correlation coefficients:

```
# Calculate Pearson's r and its confidence intervals
cor.test(x = df sample sum$mean
         ,y = df sample sum$mean sample
         , method = "pearson"
         , conf.level = 0.95)
##
##
   Pearson's product-moment correlation
##
## data: df sample sum$mean and df sample sum$mean sample
## t = 41.581, df = 8, p-value = 1.233e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9898954 0.9994755
## sample estimates:
##
        cor
## 0.9976945
```

All calculated regression coefficients match those in the spreadsheet.

Perform ANOVA for estimating differences between samples:

These are the data shown in cells P42:V51. The ANOVA is fitted with the following equation, where $y_i y_i$ represents the Z-score of the *i*thith sample in the *j*thjth repeat measurement; $\mu\mu$ represents the grand mean of all measurements; $\alpha_i \alpha_i$ represents the effect of the *i*thith sample; and $\epsilon_{ij}\epsilon_{ij}$ represents the residual error (i.e., error between repeats) for the *i*thith sample and the *j*thjth repeat.

 $y_{ij} = \mu + \alpha_i + \epsilon_{ij} y_{ij} = \mu + \alpha_i + \epsilon_{ij}$

```
# Transform data
df_anova <- left_join(df_group, df_sample, by = "sample") %>%
 melt(id.vars = c("sample", "mean", "sd", "n")) %>%
 group by(sample) %>%
 mutate(sample_z = (value - mean) / sd) \$>\$
 as.data.frame
# Perform ANOVA
anova model <- anovaVCA(sample z ~ sample, df anova)</pre>
anova model$aov.tab[,1:6]
             OV. TADI, 1. ...
DF SS
57495 NA
                                       VC
                                 MS
##
                                                %Total
                                                               SD
## total 28.57495
                                 NA 2.534284 100.00000 1.591944
## sample 9.00000 71.64785 7.960873 1.085318 42.82541 1.041786
```

```
## error 50.00000 72.44833 1.448967 1.448967 57.17459 1.203730
cat("F =", round(anova_model$aov.tab[2,3] / anova_model$aov.tab[3,3], 4))
## F = 5.4942
```

The calculated values match those shown in the spreadsheet.

Conclusions:

- 1. Calculations of SEMs from the group means and SDs matched those in the spreadsheet
- 2. Calculations of sample means, SDs, differences, and Z-scores matched those in the spreadsheet
- 3. Calculations of mean Z-scores and statistical tests between the differences in values produced identical results to those in the spreadsheet
- 4. Regression analyses produced identical results to those in the spreadsheet
- 5. The ANOVA matched that presented in the spreadsheet