No 165 - Answer

An inherited metabolic disease is due to a gain in function of enzyme X. The erythrocyte activity of X was measured in 100 normal subjects and 100 patients with the disease. The 95% confidence limits of the two groups are:

Unaffected: 89 – 901 IU/L red cells Diseased: 830 – 5260 IU/L red cells

The data from the unaffected group showed a normal Gaussian distribution. However, the data from the diseased group were markedly skewed but a simple logarithmic transformation produced a reasonable Gaussian distribution.

It is proposed to use the assay of X in erythrocytes as a screening test for the disease. Calculate the decision level which will result in a sensitivity of 95%. What specificity will this achieve?

Two tailed z-distribution:

FRCPath, Spring 2014

The sensitivity is the percentage of results above the decision level (DL) in the diseased group.

First convert the 95% confidence limits of the diseased group to logarithmic units:

$$\log_{10} 830 = 2.92$$
 $\log_{10} 5260 = 3.72$

Next calculate the mean (m) and standard deviation (s) in logarithmic units:

Mean =
$$\frac{2.92 + 3.72}{2}$$
 = 3.32

The 95% confidence limits include the mean ± 1.96s

therefore
$$s = \frac{3.72 - 2.92}{1.96 \times 2} = 0.20$$

To obtain a sensitivity of 95% select a P value of 10% so that a half of values will be less than 5%. i.e. use z=1.65:

$$z = \frac{m - DL}{s}$$

$$1.65 = \frac{3.32 - DL}{0.20}$$

$$DL = 3.32 - (1.65 \times 0.20) = 2.99$$

This value is in logarithmic units so take the antilog to obtain DL in enzyme units:

$$DL$$
 = antilog₁₀ 2.99 = **977 IU/L red cells**

ACB News | Issue 622 | February 2015

Practice FRCPath Style Calculations | 15

The specificity is the percentage of normal individuals with values below the DL.

First calculate \emph{m} and \emph{s} for the unaffected group:

$$m = \frac{89 + 901}{2} = 495 \text{ IU/I red cells}$$

 $s = \frac{901 - 89}{2 \times 1.96} = 207 \text{ IU/L red cells}$

Calculate z to determine the percentage results outside m \pm DL range:

$$z = DL - m = 977 - 495 = 2.33$$

From z-table, 2% of values will fall outside the $m\pm 2.33s$ range and half of these (1%) will be above the DL.

Therefore specificity = 100 - 1 = 99%

Question 166

A patient is found to have a serum digoxin concentration of 3.8 µg/L. Digoxin was stopped. Assuming a half life of digoxin in the serum of 40 hours, how long would it take for the serum digoxin concentration to fall to 2.0 µg/L?

FRCPath, Spring 2014