Deacon's Challenge No. 16 Answer

A buffer is required for an enzymatic assay which has a pH of 7.4 and total phosphate concentration of 100 mmol/L.

Calculate the amounts of anhydrous sodium dihydrogen phosphate and disodium hydrogen phosphate which need to be
weighed in to make 1 L of buffer. The pK of the dissociation is 6.82 (Atomic weights: Na = 23, P = 31).

MRCPath November 200

The relationship between the concentrations of an acid, its conjugate base and the pH of the solution is described by the Henderson Hasselbalch equation: $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2$

$$pH = pK_a + log_{10} [salt]$$

The required pH of the phosphate buffer is close to the second pK_a so that the dissociation to be considered in:

$$H_2PO_4^- \longleftrightarrow HPO_4^{2^-} + H^+$$

Substitute [salt] = [HPO $_4$ °-], [acid] = [H $_2$ PO $_4$ -], pH = 7.40 and pK $_a$ = 6.82 into the Henderson Hasselbalch equation:

$$7.40 = 6.82 + log_{10} [HPO_4^{2^-}] [H_2PO_4^{-}]$$

Rearranging: $\log_{10} [HPO_4^{2-}] = 7.40 - 6.82 = 0.58$

Since the required total phosphate concentration is 100 mmol/L $\,$ (i.e. 0.1 mol/L) $\,$

$$0.1 = [H_2PO_4^-] + [HPO_4^{2^-}]$$

 $\label{eq:Rearranging: HPO_4^2- = 0.1 - [H_2PO_4^-](ii)} \text{Rearranging: } - \text{[H_2PO_4^-]}(ii)$

Substitute for $[HPO_4^{2^-}]$ in equation (i) and solve for $[H_2PO_4^{-}]$:

$$0.1 - \frac{[H_2PO_4]}{[H_0PO_4]} = 3.80$$

$$0.1 - [H_2PO_4^-] = 3.80 [H_2PO_4^-]$$

12 • ACB News Issue 471 • July 2002

Questions MRCPath Short Questions MRCPath Short Questions

$$3.80 [H_2PO_4^-] + [H_2PO_4^-] = 0.1$$

$$4.80 [H_2PO_4^{-}] = 0.1$$

$$[H_2PO_4^{-}] = 0.1 = 0.0208 \text{ mol/L}$$

Substitute $[H_2PO_4^-] = 0.0208$ in equation (ii) and solve for $[HPO_4^{2^-}]$:

$$[\mathrm{HPO_4^{2^-}}]$$
 = 0.1 - 0.0208 = 0.0792 mol/L

Now calculate the weights required for each phosphate salt:

For anhydrous sodium dihydrogen phosphate, ${\rm NaH_2PO_4}$:

$$MW \ = \ 23 \ + \ (2 \ x \ 1) \ + \ 31 \ + \ (4 \ x \ 16) \ = \ 120$$

Weight required per litre
$$= 0.0208 \text{ x } 120 = 2.50g$$

For anhydrous disodium hydrogen phosphate, $\,$ Na2HPO4:

$$MW = (2 \times 23) + 1 + 31 + (4 \times 16) = 142$$

Weight required per litre =
$$0.0792 \times 142$$
 = $11.2g$

Question No. 17

25~mg of bilirubin $(C_{33}H_{36}O_6N_4)$ were dissolved in 4 mL of dimethyl sulphoxide; 200mL of this solution was diluted to 250mL with chloroform. This solution gave an absorbance of 0.502 when measured in a 1 cm cell against a chloroform blank.

Given that the molar absorbtivity of bilirubin under these conditions is 6.07×10^4 , calculate the percentage purity of the bilirubin. MRCPath May 1995