Deacon's Challenge No 191 - Answer

You need to make up a phosphate buffer with a pH of 7.4 and a total phosphate concentration of 40 mmol/L. Calculate the amounts of sodium dihydrogen phosphate and disodium monohydrogen phosphate that need to be weighed into 1 litre of water, given that the pKa is 6.82 (atomic weights: Na 23, P 31).

FRCPath, Autumn 2015

The Henderson-Hasselbalch equation relates the concentrations of acid and salt to pH:

 $pH = pKa + log_{10} [salt]$ [acid]

The dihydrogen phosphate ion dissociates to give monohydrogen phosphate and hydrogen ions:

 $H_2PO_4^- \longrightarrow HPO_4^{2^-} + H^+$

Therefore the relevant form of the Henderson-Hasselbalch equation is:

 $pH = pKa + log_{10} [HPO_4^{2^-}] [H_2PO_4^{-}]$

Only the total phosphate concentration is given so express the concentration of one in terms of the other:

Total phosphate = $[HPO_4^2] + [H_2PO_4] = 40 \text{ mmol/L}$

Therefore $[HPO_4^{2^-}] = 40 - [H_2PO_4^{-}]$

Substitute this, pH = 7.4 and pKa = 6.82 into the Henderson-Hasselbalch equation and solve for $[H_2PO_4^-]$:

7.4 =
$$6.82 + \log_{10} (40 - [H_2PO_4^{-}]) - [H_2PO_4^{-}])$$

 $\log_{10} (40 - [H_2PO_4^{-}]) = 7.4 - 6.82 = 0.58$
 $(40 - [H_2PO_4^{-}]) = antilog_{10} 0.58 = 3.80$ (to 3 sig figs)
 $\frac{(40 - [H_2PO_4^{-}])}{[H_2PO_4^{-}]} = 3.80 [H_2PO_4^{-}]$
 $40 - [H_2PO_4^{-}] = 3.80 [H_2PO_4^{-}] + [H_2PO_4^{-}] = 4.80 [H_2PO_4^{-}]$
 $[H_2PO_4^{-}] = \frac{40}{4.80} = 8.33 \text{ mmol/L}$

The concentration of the other species $[HPO_4^{2^-}]$ is calculated by difference:

 $[HPO_4^{2^-}] = 40 - 8.33 = 31.67 \text{ mmol/L}$

For each salt:

 $Conc^{n} (g/L) = Conc^{n} (mol/L) \times MW = Conc^{n} (mmol/L) \times MW$ $MW NaH_{2}PO_{4} = 23 + (2 \times 1) + 31 + (4 \times 16) = 120$ $MW Na_{2}HPO_{4} = (2 \times 23) + 1 + 31 + (4 \times 16) = 142$ $Wt NaH_{2}PO_{4} to make 1L = 8.33 \times 120 = 1.00 \text{ g} \quad (to 3 \text{ sig figs})$ $Wt Na_{2}HPO_{4} to make 1L = 31.67 \times 142 = 4.50 \text{ g} \quad (to 3 \text{ sig figs})$

Question 192

A metabolic disease is known to result in decreased plasma activity of enzyme X. X was measured in 100 normal subjects and 100 individuals with the disease. A reasonable Gaussian distribution was obtained for each population with the following statistics:

	Mean (<i>m</i>)	Standard deviation (s)
Normal subjects	1025 U/L	100 U/L
Diseased group	530 U/L	200 U/L

Find the decision level at which sensitivity is equal to specificity. What is the sensitivity (and hence specificity) at this decision level?

Two-tailed values of the normal deviate (z-score) and probability (P) are:

P(%)	10	5	2	1	0.2	0.1
Z	1.65	1.96	2.33	2.58	3.09	3.29