ACB spreadsheet verification: bias estimate from reference materials

Ed Wilkes

This document describes the verification of the bias estimates from reference materials spreadsheet, written by Prof Anders Kallner, that performs calculations for the assessment of bias between a given material and reference materials (July 2018 version). Calculations performed by these spreadsheets were verified in an independent statistical software (the R statistical computing environment v3.4.1) by the author of this document. The R packages required to run this code are shown below. This code can be copied and pasted into an instance of R and, given the test data as input, reproduce the analysis in this document.

Required packages:

```
require(dplyr)
require(knitr)
require(reshape2)
```

Reading data into R:

```
# Read in csv file: "2018-07 Trueness (bias) from reference materials -
test data.csv""
df <- read.csv(file.choose(), header = TRUE)
kable(df)</pre>
```

```
sample value_1 value_2
```

1	37	38
2	39	37
3	36	36
4	39	38
5	38	37

Check calculation of means, SD, SEM, bias, and ranges:

The verification range can be defined as below, where kk = 2 (or is derived empirically from the *t*t -distribution), and *u*u represents the uncertainty of the mean (i.e., SEM). These values are shown in cells 110:119 and T10:T19.

```
Verification range (MD)=k \cdot u_{2target}+u_{2measured}-\dots \sqrt{Verification}
range (MD)=k \cdot u_{12}target_{2}+u_{2measured}
```

```
target_value <- 40
target_cv <- 5
target u <- 40 * (5 / 100)</pre>
```

```
df %>% melt(id.vars = "sample") %>%
  summarise(mean = mean(value)
             , n = n()
             ,sd = sd(value)
             , sem = sd(value) / sqrt(n)
             ,bias = mean - target value
             , interval = 2 * \operatorname{sqrt}((\operatorname{target}_u ^ 2) + (\operatorname{sem} ^ 2)) \# \operatorname{use} k = 2
             ,interval_low = mean - interval
             ,interval_high = mean + interval
             ,k_t_{dist} = qt(p = 0.975, df = n - 1) # derive k empirically
from t-distribution
             ,t_interval = k_t_dist * sqrt((target_u ^ 2) + (sem ^ 2))
             ,t_interval_low = mean - t_interval
             ,t interval high = mean + t interval
  ) 응>응
  kable
                    bi interv interval_ interval_ k_t_d t_inter t_interval t_interval_
me
    n
          sd
               sem
                    as
                                            high
 an
                           al
                                   low
                                                    ist
                                                           val
                                                                    _low
                                                                               high
                     37. 1
      1.080 0.341
                                                 2.262 4.5898
                                                                32.91018
                                                                           42.08982
```

The mean, SD, SEM, bias, and verification range values match those calculated in the spreadsheet.

157

2

Conclusions:

123

565 2.5

5 0

1. Calculations of mean, SD, SEM, bias, and verification range matched the values in the spreadsheet