a) b)

lss

Deacon's Challenge No 188 - Answer

The table shows data for two urinary screening tests for the detection of phaeochromocytoma:

Test	Sensitivity (%)	Specificity (%)
VMA	96.7	99.1
Total metanephrines	100	98

The prevalence of phaeochromocytoma in a hypertensive population is known to be 0.5%. For a hypertensive individual calculate the probability of phaeochromocytoma being pre

resent:							
Ł	 a) Before either test is performed b) If the VMA test is positive c) If the total metanephrine test is positive 						
	The pre-test probability of disease is simply the prevalence expressed as an absolute value i.e. 0.005						
	The probability of a positive test result indicating the presence of disease is simply the ratio of true positives (TP) to all positive results (TP + FP):						
	Probability of disease if result positive $= \frac{TP}{TP + FP}$						
F	/alues for TP and FP can be calculated from sensitivity, specificity and prevalence. For simplicity it is probably easiest to work with a hypothetical large population e.g. 1,000,000						
F	For a population of 1,000,000 the prevalence becomes 1,000,000 x 0.5/100 = 5,000						
5	Since 96.7% (the sensitivity) of these individuals will give a positive VMA test						
	TP = 5,000 × 96.7/100 = 4,835						
=	For a population of 1,000,000 the number without disease is 1,000,000 - 5,000 = 995,000 and since the specificity (the percentage of these disease-free individuals giving a negative result) is 99.1%						
	TN = 995,000 x 99.1/100 = 986,045						
A	And the remainder will have positive (FP) results = 995,000 - 986,045 = 8,995						
٦	Therefore probability of phaeochromocytoma if VMA is positive = $\frac{TP}{(TP + FP)}$						
	$\frac{4,835}{(4835 + 8995)} = \frac{4,835}{13,830} = 0.35 \text{ (to 2 sig figs)}$						
sue 645	February 2017 ACB News						

Practice FRCPath Style Calculations | 25

c)	Similarly for the total metanephrine test:							
	TP = 5,000 x 100/100 = 5,000							
	$TN = 995,000 \times 98/100 = 975,100$							

IN	=	995,000 x 98/	100	= 975,1	00			
FP	=	995,000 - 975	100	= 19,900)			
Probability of phaeochromocytoma if total metanephrine test is positive								
=	(5,	<u>5,000</u> 000 + 19,900)	=	<u>5,000</u> 24,900	=	0.20	(to 2 sig figs)	

Question 189

A 44-year old woman, who suffered a miscarriage of pregnancy four days previously, was found to have a serum β -HCG concentration of 658 IU/L. Given that the half-life of β -HCG at more than 48-hours after termination of pregnancy is 56 hours, in how many days time would you expect her serum β -HCG concentration to reach a level of 5 IU/L?

