ACB spreadsheet verification: precision estimates by variance component analysis

Ed Wilkes

This document describes the verification of the variance component analysis spreadsheet, written by Prof Anders Kallner, that performs calculations for the assessment of assay precision (imprecision) and [optionally] trueness (bias) (July 2018 version). Calculations performed by these spreadsheets were verified in an independent statistical software (the R statistical computing environment v3.4.1) by the author of this document. The R packages required to run this code are shown below. This code can be copied and pasted into an instance of R and, given the test data as input, reproduce the analysis in this document.

Required packages:

```
require (dplyr)
require (ggplot2)
require (knitr)
require (outliers)
require (VCA)
```

Reading data into R:

```
# Read in csv file: "2018-07 ACB Precision (imprecision) and trueness (bias) - test data 1.c
sv"
df_1 <- read.csv(file.choose(), header = TRUE)
# Read in csv file: "2018-07 ACB Precision (imprecision) and trueness (bias) - test data 2.c
sv"
df_2 <- read.csv(file.choose(), header = TRUE)</pre>
```

Check calculation of means, SE, SD, and CV for data set 1:

These are the data presented in cells C21:G24.

day	mean	n	sd	sem	cv

day	mean	n	sd	sem	cv
1	9.83	5	0.308	0.14	3.13
2	9.68	5	0.537	0.24	5.55
3	9.53	5	0.491	0.22	5.15
4	10.27	5	0.325	0.15	3.16
5	9.86	5	0.359	0.16	3.64

The calculated values match those in the spreadsheet.

Check calculation of means, SE, SD, and CV for data set 2:

day	mean	n	sd	sem	cv
1	43.59	5	0.637	0.28	1.46
2	44.61	5	0.595	0.27	1.33
3	43.78	5	2.627	1.17	6.00
4	43.89	5	0.265	0.12	0.60
5	43.89	5	0.265	0.12	0.60

The calculated values match those in the spreadsheet.

```
ggplot(df_1, aes(x = day, y = value))+
stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.1)+
geom_jitter(width = 0.05, alpha = 0.5)+
stat_summary(fun.y = "mean", geom = "point", size = 2, colour = "red2")+
theme_classic()+
ylab("Analyte concentration")+
xlab("Day")
```

```
ggplot(df_2, aes(x = day, y = value))+
stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.1)+
geom_jitter(width = 0.05, alpha = 0.5)+
stat_summary(fun.y = "mean", geom = "point", size = 2, colour = "red2")+
theme_classic()+
ylab("Analyte concentration")+
xlab("Day")
```

Perform variance component analysis for data set 1:

These data are presented in cells X7:Z22.

```
model_1 <- anovaVCA(value ~ day, df_1)
# total = intra-laboratory
# day = intermediate
# error = repeatability
# DF = degrees of freedom
# VC = variance
# SD = standard deviation
model_1</pre>
```

```
## Mean: 9.83216 (N = 25)
##
## Experimental Design: balanced | Method: ANOVA
```

All variance components match those presented in the spreadsheet.

Perform Chi-squared test against claimed imprecision values:

These data are presented in cells X27:Z38.

```
model_1_tests <- VCAinference(model_1</pre>
                              , alpha = 0.05
                              ,total.claim = 7.0
                              ,claim.type = "CV"
                              ,error.claim = 3.3) $ChiSqTest
model 1 tests
##
          Name Claim ChiSq value Pr (>ChiSq)
## total total
               7.0
                     8.586901 0.02001374
## day
         day NA
                             NA
                                          NA
## error error
                 3.3
                       32.632135 0.96298894
```

Based on these results, in agreement with the spreadsheet, the precision would be deemed "Acceptable" for both intralaboratory and repeatability.

Perform variance component analysis for data set 2:

```
## Perform variance component analysis for data set 2
model 2 <- anovaVCA(value ~ day, df 2)</pre>
model 2
##
##
  Result Variance Component Analysis:
##
##
   _____
##
                            MS
##
    Name
         DF
                   SS
                                     VC
                                             %Total SD
                                                       CV[응]
  1 total 23.809524
                                     1.559951 100
                                                   1.24898 2.841848
##
  2 day
              2.988183 0.747046 0*
                                             0*
                                                   0* 0*
        4
##
                  31.199013 1.559951 1.559951 100 1.24898 2.841848
##
  3 error 20
##
  Mean: 43.94956 (N = 25)
##
##
## Experimental Design: balanced | Method: ANOVA | * VC set to 0 | adapted MS used for tot
al DF
```

All variance components match those presented in the spreadsheet.

Perform Chi-squared test against claimed imprecision:

```
model 2 tests <- VCAinference(model 2</pre>
                              , alpha = 0.05
                              ,total.claim = 3.4
                              ,claim.type = "CV"
                              ,error.claim = 2.5)$ChiSqTest
model 2 tests
##
          Name Claim ChiSq value Pr (>ChiSq)
## total total 3.4
                       16.63392 0.1427094
## dav
         dav
                 NA
                             NA
                                          NA
## error error 2.5
                        25.84353 0.8289579
```

Based on these results, in agreement with the spreadsheet, the precision would be deemed "Acceptable" for both intralaboratory and repeatability.

Perform Grubb's tests for detecting outliers:

These data are presented in cells X39:Z41.

```
grubbs.test(df 1$value)
##
    Grubbs test for one outlier
##
##
## data: df 1$value
  G = 1.87410, U = 0.84756, p-value = 0.6707
##
## alternative hypothesis: lowest value 8.98 is an outlier
grubbs.test(df 2$value)
##
   Grubbs test for one outlier
##
##
## data: df_2$value
\#\# G = 3.30920, U = 0.52471, p-value = 0.001723
  alternative hypothesis: lowest value 40 is an outlier
##
```

Based on these results, a significant outlier was detected in data set 2 and thus the data should be checked, in agreement with the spreadsheet.

Check calculations of bias, uncertainty of bias, tt critical value, and Z-scores: These data are presented in cells AB7:AD18.

```
target_1 <- 10
target_uncertainty_1 <- 0.3 # (CV = 3.0% of 10)
target_2 <- 40
target_uncertainty_2 <- 1.0 # (CV = 2.5% of 40)
# T-score (k)
k <- round(qt(1 - (0.05/2), df = 25 - 1), 3)
cat("k =", k)
## k = 2.064
# Bias, uncertainty of bias, and z-score 1
mean_bias_1 <- mean(df_1$value - target_1)
se_bias_1 <- sd(target_1 - df_1$value) / sqrt(25)
# Bias, uncertainty of bias, and z-score 2
mean_bias_2 <- mean(df_2$value - target_2)
se bias 2 <- sd(target 2 - df 2$value) / sqrt(25)</pre>
```

Z-scores were computed using the following formula, where x^-x^- represents the mean of the *measured* values; $\mu\mu$ represents the *target* value; and $\sigma\sigma$ represents the *target* standard deviation. $Z=(x^--\mu)/\sigma Z=(x^--\mu)/\sigma$

```
## Calculation of Z-scores
z score 1 <- mean bias 1 / target uncertainty 1
z score 2 <- mean bias 2 / target uncertainty 2
# Present results
data.frame(Level = c(1, 2))
           ,Mean bias = c(round(mean bias 1, 2), round(mean bias 2, 2))
           ,SE bias = c(round(se bias 1, 2), round(se bias 2, 2))
           ,Z score = c(round(z \text{ score } 1, 2), round(z \text{ score } 2, 2)))
     Level Mean bias SE bias Z score
##
               -0.17 0.09 -0.56
## 1
         1
         2
                3.95
                        0.24
                                3.95
## 2
```

Based on these results, the bias for level 1 would be "Acceptable" and would be "Rejected" for level 2. Note that the spreadsheet uses the following formula for Z-score calculation, where x^-x^- represents the mean of the *measured* values; $\mu\mu$ represents the *target* value; and ss represents the standard *error* of the *measured* data. $Z=(x^--\mu)/sZ=(x^--\mu)/s$

Conclusions:

- 1. Calculations of of mean bias, SE, SD, and CVs matched thoses in the spreadsheet
- 2. Variance component analyses produced identical results to those calculated in the spreadsheet
- 3. Chi-squared tests produced identical results to those in the spreadsheet
- 4. Some discrepancies existed in the calculation of the Z-scores and biases due to differences in the formula used
- Calculated data set 1 Z-score = -0.56; spreadsheet Z-score = -1.84
- Calculated data set 2 Z-score = 3.95; spreadsheet Z-score = 3.97