ACB spreadsheet verification: precision estimates by variance component analysis

Ed Wilkes

This document describes the verification of the variance component analysis spreadsheet, written by Prof Anders Kallner, that performs calculations for the assessment of assay precision (imprecision) and [optionally] trueness (bias) (July 2018 version). Calculations performed by these spreadsheets were verified in an independent statistical software (the R statistical computing environment v3.4.1) by the author of this document. The R packages required to run this code are shown below. This code can be copied and pasted into an instance of R and, given the test data as input, reproduce the analysis in this document.

Required packages:

```
require(dplyr)
require(ggplot2)
require(knitr)
require(outliers)
require(VCA)
```


Reading data into R :

```
# Read in csv file: "2018-07 ACB Precision (imprecision) and trueness (bias) - test data 1.c
sv"
df_1 <- read.csv(file.choose(), header = TRUE)
# Read in csv file: "2018-07 ACB Precision (imprecision) and trueness (bias) - test data 2.c
SV"
df_2 <- read.csv(file.choose(), header = TRUE)
```


Check calculation of means, $S E, S D$, and CV for data set 1:

These are the data presented in cells C21:G24.

```
df_1 %>%
    group_by(day) %>%
    summarise(mean = round(mean(value), digits = 2)
            ,n = n()
            ,sd = round(sd(value), digits = 3)
            ,sem = round(sd(value) / sqrt(n), digits = 2)
            ,cv = round(sd / mean * 100, digits = 2)
    ) %>%
    kable
```

day	mean	n	sd	sem	cv
1	9.83	5	0.308	0.14	3.13
2	9.68	5	0.537	0.24	5.55
3	9.53	5	0.491	0.22	5.15
4	10.27	5	0.325	0.15	3.16
5	9.86	5	0.359	0.16	3.64

The calculated values match those in the spreadsheet.

Check calculation of means, SE, SD, and CV for data set 2:

```
df_2 %>%
    group_by(day) %>%
    summarise(mean = round(mean(value), digits = 2)
        ,n=n()
        ,sd = round(sd(value), digits = 3)
            ,sem = round(sd(value) / sqrt(n), digits = 2)
            ,cv = round(sd / mean * 100, digits = 2)
    ) %>%
    kable
\begin{tabular}{cccccc} 
day & mean & n & sd & sem & cv \\
\hline 1 & 43.59 & 5 & 0.637 & 0.28 & 1.46 \\
\hline 2 & 44.61 & 5 & 0.595 & 0.27 & 1.33 \\
\hline 3 & 43.78 & 5 & 2.627 & 1.17 & 6.00 \\
\hline 4 & 43.89 & 5 & 0.265 & 0.12 & 0.60 \\
\hline 5 & 43.89 & 5 & 0.265 & 0.12 & 0.60
\end{tabular}
```

The calculated values match those in the spreadsheet.

Plot data:

```
ggplot(df_1, aes(x = day, y = value))+
    stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.1)+
    geom_jitter(width = 0.05, alpha = 0.5) +
    stat_summary(fun.y = "mean", geom = "point", size = 2, colour = "red2")+
    theme_classic()+
    ylab("Analyte concentration")+
    xlab("Day")
```

```
ggplot(df_2, aes(x = day, y = value))+
    stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.1)+
    geom_jitter(width = 0.05, alpha = 0.5)+
    stat_summary(fun.y = "mean", geom = "point", size = 2, colour = "red2")+
    theme_classic()+
    ylab("Analyte concentration")+
    xlab("Day")
```


Perform variance component analysis for data set 1:

These data are presented in cells $\mathrm{X7}: \mathrm{Z22}$.

```
model_1 <- anovaVCA(value ~ day, df_1)
# total = intra-laboratory
# day = intermediate
# error = repeatability
# DF = degrees of freedom
# vC = variance
# SD = standard deviation
model_1
##
##
## Result Variance Component Analysis:
## -------------------------------------
##
\#\# Name DF SS MS VC FTotal SD [\%]
## 1 total 19.028328
    0.213762 100
    0.462344 4.702361
## 2 day 4 1.526951 0.381738 0.041994 19.645268 0.204924 2.084227
## 3 error 20 3.435352 0.171768 0.171768 80.354732 0.414449 4.215234
```


Mean: 9.83216 (N = 25)

Experimental Design: balanced | Method: ANOVA

```

All variance components match those presented in the spreadsheet.

\section*{Perform Chi-squared test against claimed imprecision values:}

These data are presented in cells X27:Z38.
```

model_1_tests <- VCAinference (model_1
,alpha = 0.05
,total.claim = 7.0
,claim.type = "CV"
,error.claim = 3.3)\$ChiSqTest
model_1_tests

Name Claim ChiSq value Pr (>ChiSq)

total total 7.0 8.586901 0.02001374

day day NA NA NA

error error 3.3 32.632135 0.96298894

```

Based on these results, in agreement with the spreadsheet, the precision would be deemed "Acceptable" for both intralaboratory and repeatability.

\section*{Perform variance component analysis for data set 2:}
```


Perform variance component analysis for data set 2

model_2 <- anovaVCA(value ~ day, df_2)
model_2

Result Variance Component Analysis:

Name DF SS MS VC CV[%]

1 total 23.809524 1.559951 100 1.24898 2.841848

2 day 4 2.988183 0.747046 0* 0* 0* 0*

3 error 20 31.199013 1.559951 1.559951 100 1.24898 2.841848

Mean: 43.94956 (N = 25)

Experimental Design: balanced | Method: ANOVA | * VC set to 0 | adapted MS used for tot

al DF

```

All variance components match those presented in the spreadsheet.

\section*{Perform Chi-squared test against claimed imprecision:}
```

model_2_tests <- VCAinference(model_2
,alpha = 0.05
,total.claim = 3.4
,claim.type = "CV"
,error.claim = 2.5)\$ChiSqTest
model_2_tests

Name Claim ChiSq value Pr (>ChiSq)

total total 3.4 16.63392 0.1427094

day day NA NA NA

error error 2.5 25.84353 0.8289579

```

Based on these results, in agreement with the spreadsheet, the precision would be deemed "Acceptable" for both intralaboratory and repeatability.

\section*{Perform Grubb's tests for detecting outliers:}

These data are presented in cells X39:Z41.
```

grubbs.test(df_1\$value)

Grubbs test for one outlier

data: df_1\$value

G = 1.87410, U = 0.84756, p-value = 0.6707

alternative hypothesis: lowest value 8.98 is an outlier

grubbs.test(df_2\$value)

Grubbs test for one outlier

data: df_2\$value

G = 3.30920, U = 0.52471, p-value = 0.001723

alternative hypothesis: lowest value 40 is an outlier

```

Based on these results, a significant outlier was detected in data set 2 and thus the data should be checked, in agreement with the spreadsheet.

Check calculations of bias, uncertainty of bias, tt critical value, and Z-scores:
These data are presented in cells AB7:AD18.
```


Target values

```
```

target_1 <- 10
target_uncertainty_1 <- 0.3 \# (CV = 3.0% of 10)
target_2 <- 40
target_uncertainty_2 <- 1.0 \# (CV = 2.5% of 40)

T-score (k)

k <- round(qt(1 - (0.05/2), df = 25 - 1), 3)
cat("k =", k)

k = 2.064

Bias, uncertainty of bias, and z-score 1

mean_bias_1 <- mean(df_1$value - target_1)
se_bias_1 <- sd(target_1 - df_1$value) / sqrt(25)

Bias, uncertainty of bias, and z-score 2

mean_bias_2 <- mean(df_2$value - target_2)
se_bias_2 <- sd(target_2 - df_2$value) / sqrt(25)

```

Z-scores were computed using the following formula, where \(\mathrm{x}^{-} \mathrm{x}^{-}\)represents the mean of the measured values; \(\mu \mu\) represents the target value; and \(\sigma \sigma\) represents the target standard deviation.
\[
\mathrm{Z}=\left(\mathrm{x}^{-}-\mu\right) / \sigma \mathrm{Z}=\left(\mathrm{x}^{-}-\mu\right) / \sigma
\]
```


Calculation of Z-scores

z_score_1 <- mean_bias_1 / target_uncertainty_1
z_score_2 <- mean_bias_2 / target_uncertainty_2

Present results

data.frame(Level = c(1, 2)
,Mean_bias = c(round(mean_bias_1, 2), round(mean_bias_2, 2))
,SE_bias = c(round(se_bias_1, 2), round(se_bias_2, 2))
,Z_score = c(round(z_score_1, 2), round(z_score_2, 2)))

Level Mean_bias SE_bias Z_score

1

2 1 2 3.95 0.24 3.95

```

Based on these results, the bias for level 1 would be "Acceptable" and would be "Rejected" for level 2. Note that the spreadsheet uses the following formula for \(Z\)-score calculation, where \(\mathrm{x}^{-} \mathrm{x}^{-}\)represents the mean of the measured values; \(\mu \mu\) represents the target value; and ss represents the standard error of the measured data.
\[
Z=\left(x^{-}-\mu\right) / s Z=\left(x^{-}-\mu\right) / s
\]

\section*{Conclusions:}
1. Calculations of of mean bias, SE, SD, and CVs matched thoses in the spreadsheet
2. Variance component analyses produced identical results to those calculated in the spreadsheet
3. Chi-squared tests produced identical results to those in the spreadsheet
4. Some discrepancies existed in the calculation of the Z-scores and biases due to differences in the formula used
- Calculated data set 1 Z -score \(=-0.56\); spreadsheet \(Z\)-score \(=-1.84\)
- Calculated data set 2 Z-score \(=3.95\); spreadsheet \(Z\)-score \(=3.97\)```

