Deacon's Challenge No.3 Answer

he imprecision of a certain assay for troponin I yields a coefficient of variation of 13% between 0.3 and 0.5 μ g/L, around the decision point for myocardial infarction of 0.4 μ g/L. A result of 0.46 μ g/L is obtained on a sample. Assuming that is the true level of troponin I, give an estimate of the probability that analysis of that same sample would give a result below the decision point.

(MRCPath Nov 2000)

First calculate the standard deviation (SD):

$$CV(\%) = SD \times 100$$
Mean

where CV = coefficient of variation = 13%mean = true value for the sample = 0.46 μ g/L

$$13 = \frac{\text{SD x } 100}{0.46}$$

SD =
$$\frac{13 \times 0.46}{100}$$
 = 0.06 μ g/L

Therefore the analyses of the sample are distributed with a mean of 0.46 μ g/L and SD of 0.06 μ g/L. We want find out what proportion of results will be below the decision point of 0.4 μ g/L. To do this we need to 'normalize' the data so that the mean is zero and the SD =1. i.e. calculate the standard deviate - 'z':

$$z = \frac{\text{decision point - mean}}{\text{SD}} = \frac{0.4 - 0.46}{0.06} = \frac{-0.06}{0.06} = -1$$

Therefore the decision point is -1SD from the mean. \pm 1SD encompasses two thirds of values (this information can be gained from tables of z). Therefore one third of results will be outside the mean \pm 1SD range (one sixth greater than mean +SD and one sixth less than mean - SD).

Therefore the probability of obtaining a result below the decision point is 1/6 i.e. 0.17

Deacon's Challenge Question No. 4

A solution containing a substance of molecular weight 400 at a concentration of 3 g/L transmitted 75% of incident light of a particular wavelength in a 1cm cuvette. Calculate the % of incident light of the same wavelength that would be transmitted by a solution of the same substance at a concentration of 4 g/L and calculate the molar absorption coefficient for that substance at this wavelength.

(MRCPath)