How many grams of anhydrous sodium dihydrogen phosphate and disodium hydrogen phosphate are required to prepare 1 Litre of buffer of physiological pH (7.4) and osmolality (290 mmol/L)? (pKa₂ of phosphate = 6.82. Atomic weights: Na = 23, P = 31)

The dissociation to consider is:

and the corresponding Henderson-Hasselbalch equation is:

pH = pKa +
$$log_{10} \frac{[HPO_4^2]}{[H_2PO_4]}$$

where the concentrations are in mmol/L.

Substitute pH = 7.4 and pKa = 6.82 then solve for $[HPO_A^{2-}]/[H_2PO_A^{-}]$:

The osmolality is given, not the total phosphate concentration, and is the sum of all ionic species:

Osmolality =
$$[Na^+]$$
 + $[HPO_4^{2^-}]$ + $[H_2PO_4^-]$

which can also be written:

Since each $\mathsf{HPO_4^{2^-}}$ ion is associated with two Na+ ions:

Osmolality of
$$Na_2HPO_4 = 3 [HPO_4^{2-}]$$

Similarly each ${\rm H_2PO_4^-}$ ion is associated with one Na+ ion:

Osmolality of
$$NaH_2PO_4 = 2[H_2PO_4^-]$$

Therefore total osmolality = $3[HPO_4^{2-}] + 2[H_2PO_4^{-}] = 290 \text{ mmol/L}$

Rearranging:

$$[H_2PO_4^-] = \frac{290 - 3[HPO_4^2]}{2}$$

$$[H_2PO_4^-] = 145 - 1.5[HPO_4^{2^-}]$$

Substitute this expression for
$$[H_2PO_4^-]$$
 into $\overline{[HPO_4^{2^-}]} = 3.80$ then solve for $[HPO_4^{2^-}]$: $\overline{[H_2PO_4^-]}$

ACB News | Issue 570 | October 2010

Practice FRCPath Style Calculations | 11

$$\begin{array}{cccc} & & & & & & & & & & & \\ \hline 145 - 1.5[\text{HPO}_4^{z^2}] & & & & & & & \\ \hline 145 - 1.5[\text{HPO}_4^{z^2}] & & & & & & \\ \hline [\text{HPO}_4^{z^2}] & & & & & & \\ \hline [\text{HPO}_4^{z^2}] & & & & & \\ \hline [\text{HPO}_4^{z^2}] & & & & & \\ \hline [\text{HPO}_4^{z^2}] & & & \\ \hline \end{bmatrix} & & & & \\ \hline \begin{bmatrix} \text{HPO}_4^{z^2} \\ \text{5.7} \end{bmatrix} & & & \\ \hline \end{bmatrix} & \\ \hline \end{bmatrix} & &$$

Next substitute this value for [HPO₄²⁻] into:

$$[H_2PO_4^{-}] = 145 - 1.5[HPO_4^{2^{-}}]$$

then solve for [H₂PO₄-]:

$$[H_2PO_4^-]$$
 = 145 - (1.5 x 82.2)
= 145 - 123.3
= 21.7 mmol/L

To prepare 1 L solution:

Wt (g) =
$$\frac{\text{Concentration (mmol/L)} \times \text{MW}}{1000}$$

For Na₂HPO₄:

MW =
$$(2 \times 23) + 1 + 31 + (4 \times 16) = 142$$

Wt = $\frac{82.2 \times 142}{1000} = 11.7 \text{ g}$

For NaH₂PO₄:

MW =
$$23 + (2 \times 1) + 31 + (4 \times 16) = 120$$

Wt = $21.7 \times 120 = 2.60 \text{ g}$
 1000

Question 114

100 serum samples from healthy individuals were analysed in order to determine a reference range for a new analyte. The data were found to be significantly skewed so a logarithmic transformation was used to derive a 95% confidence interval of 20-100 nmol/L. What is the probability of obtaining a value of 116 nmol/L or greater from a normal subject? Values of the normal deviate (z-score) and P are: