No 138 - Answer

The following results were obtained on a neonate weighing 1.06 kg:

$$pH = 7.143$$

 $Pco_2 = 5.02 \, kPa$

The consultant gives the child a 6 mL bolus of sodium hydrogen carbonate 4.2%. The child is ventilated and no changes are made to the ventilator settings. Calculate the anticipated change in pH.

Assume that body water in infancy is 80% of body mass, evenly distributed between intra- and extra-cellular compartments.

FRCPath, Autumn 2011

First calculate the original ${\rm HCO_3}^-$ from the basal pH and ${\rm Pco_2}$ using the Henderson-Hasselbalch equation:

pH = pKa +
$$log_{10}$$
 $\frac{[HCO_3^-]}{\alpha Pco_2}$
7.143 = 6.1 + log_{10} $\frac{[HCO_3^-]}{0.225 \times 5.02}$
7.143 - 6.1 = 1.043 = log_{10} $\frac{[HCO_3^-]}{1.1295}$

Taking antilogs:

anti
$$\log_{10} 1.043 = 11.04 = \frac{[HCO_3^-]}{1.1295}$$

$$[HCO_3^-]$$
 = 11.04 x 1.1295 = 12.47 mmol/L

Next calculate the rise in plasma bicarbonate attributed to the administered NaHCO3:

MW NaHCO
$$_3$$
 = 23 + 1 + 12 + (3 x 16) = 84
4.2% NaHCO $_3$ = 4.2 g/100 mL = 42 g/L = $\frac{42 \times 1000}{84}$ = 500 mmol/L

Therefore 6 mL 4.2% NaHCO₃ contains
$$\frac{500 \times 6}{1000}$$
 = 3 mmol NaHCO₃

Assuming administered \mbox{HCO}_3^- remains in the ECF and is not metabolised;

Increase in plasma
$$HCO_3^-$$
 concentration = $\frac{Amount of NaHCO_3 given (mmol)}{ECF vol (L)}$

ACB News | Issue 595 | November 2012

Practice FRCPath Style Calculations | 13

ECF vol (L) = Body wt (kg) x % body water x Proportion of water in ECF

$$= 1.06 \times \frac{80}{100} \times \frac{1}{2} = 0.424 L$$

Therefore increase in plasma $HCO_3^- = \frac{3}{0.424} = 7.08 \text{ mmol/L}$

Next calculate the final HCO_3^- concentration (assuming that keeping the ventilator settings constant is able to maintain the same Pco_2):

Final [
$$HCO_3^-$$
] = Initial [HCO_3^-] + Increase in [HCO_3^-]
= 12.47 + 7.08 = 19.55 mmol/L

Next calculate the final pH using the Henderson-Hasselbalch equation using the given Pco_2 and this final $[HCO_3^-]$:

pH =
$$6.1 + \log_{10} \frac{19.55}{0.225 \times 5.02}$$
 = $6.1 + \log_{10} 17.31 = 6.1 + 1.238 = 7.338$

Finally subtract the initial pH to give the change in pH:

Change in pH = Final pH - Initial pH =
$$7.338 - 7.143 = +0.195$$

Question 139

A patient is given a loading dose of 250 µg of a new drug (MW = 781). After 12 hours, his serum drug concentration is estimated at 1.0 nmol/L. After a further 12 hours, the concentration is re-measured and is estimated at 0.8 nmol/L. Assuming the elimination of this drug follows first-order kinetics, calculate the volume of distribution and the rate constant of elimination

FRCPath, Autumn 2011