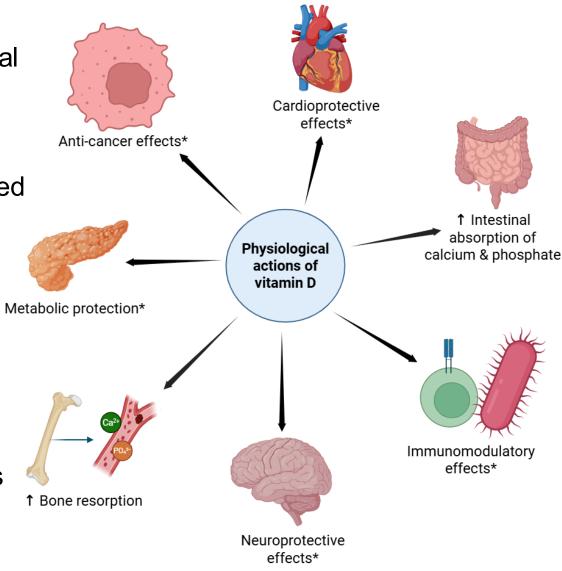
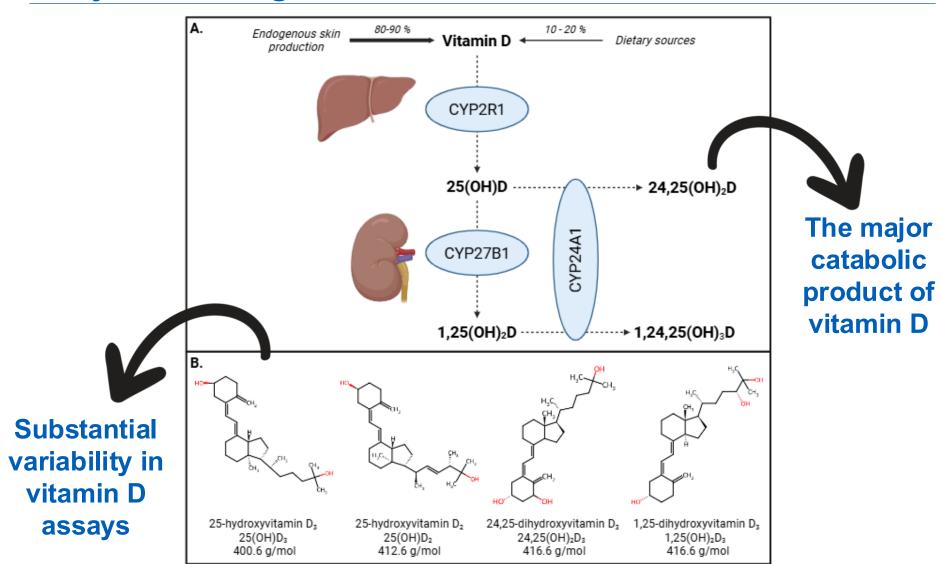


Project Background


 Vitamin D's major physiological role is calcium-phosphate homeostasis & bone health.

 There are many other proposed non-classical roles of Vit D*.

 Vitamin D deficiency is a global pandemic.


 Vitamin D guidelines lack consensus in clinical cut-offs.

 Vitamin D measurement lacks standardization.

Project Background

Project Aims & Objectives

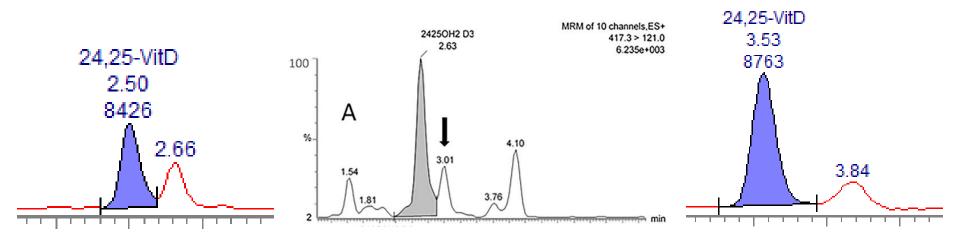
To validate an LC-MS/MS method for the measurement of vitamin D metabolites, 24,25(OH)₂D₃, 25(OH)D₃, 25(OH)D₂, that can:

Provide clinical utility in the assessment of vitamin D deficiency & specific disease states e.g. Idiopathic infantile hypercalcaemia (IIH) & CKD.

Allow us to better understand interference in routine vitamin D measurement.

Contribute to a NIST & DEQAS collaborative intercomparison study on the assessment of 24,25(OH) ₂D₃ assay commutability.

Sensitivity - Ionization efficiency


- Ionization efficiency describes how effectively compounds become ionized
- Ionization efficiency is affected by in-source fragmentation
- Water-loss [M + H H₂O]⁺ is a big problem for Vit D metabolites
- Can be overcome by using the water loss precursor ion mass
 - > i.e., m/z 417.5 becomes 399.5 (-18)
- Or, using Soft Transmission Mode (STM)
 - Selected for unstable ion species prone to in-source fragmentation

Method			Chann	Channels									
	ES+	~		Compound Name	Parent (m/z)	Daughter (m/z)	Α	Dwell (s)	Cone (V)	Collision (eV)	PIC	Comments	
Span	-	_	1	24,25VITD (Quan)	417.5000	159.2000		0.130	20	24			
	0		2	24,25VITD (Qual)	417.5000	381.4500		0.130	20	10			
			3	d6-24,25VITD (IS)	423.5000	159.2000	$\overline{\mathbf{v}}$	0.130	20	24			
					'								
Use Tune Cone Voltage													
Use Tune Collisi	Use Tune Collision Energy												
Hee Soft Transn	Use Soft Transmission Mode												

Co-eluting interferences

- Optimized SLE to finally provide the desired sensitivity...
- Co-eluting peak for 24,25(OH)₂D₃

24R,25(OH)₂D₃. A modified gradient method (as described in Section 2.5) was able to separate this peak, as shown in Fig. 2C. The mean retention time difference between $24R,25(OH)_2D_3$ and the unknown was 0.60 ± 0.03 min (10 runs over two days).

Isobaric interferences & Matrix Effects

- Isobaric compounds are those with the same m/z.
- Identify isobaric compounds with computer searches (MassBank) and through literature review of existing methods.
- We must ensure these do not co-elute with our target compounds.

$$CH_3 CD_3$$

$$OH CD_3$$

$$m/z = 423.5$$

d6-24,25(OH)₂D3 (IS)

Fludrocortisone

- Sample matrix components can also co-elute with target compounds.
- · Phospholipids are a well-known cause of ion suppression.

Isobaric interferences & Matrix Effects

0.80

1.00

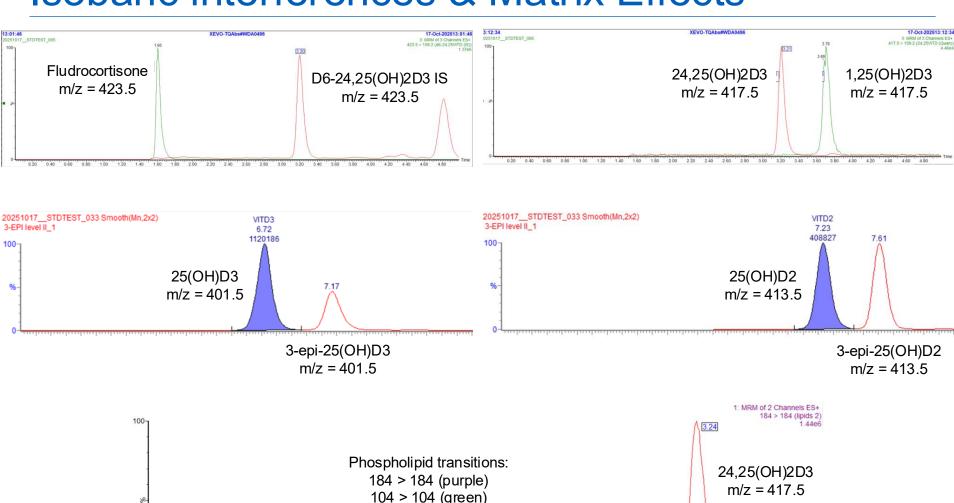
1.20

1.40

1.60

1.80

2.00


2.80

2.40

2.60

3.00

3.20

NIST & DEQAS collaboration

NIST - National Institute of Standards and Technology (USA)

DEQAS - The Vitamin D External Quality Assessment Scheme

- We participated in a NIST 24,25(OH)₂D₃ interlaboratory comparison study.
- We tested 50 unknown samples in duplicate with inter-batch NIST SRMs.
- Results were compared to the NIST RMP and 5 other participating labs.
- > We confirmed our robust assay precision
- ➤ We confirmed our positive bias of +30% similar to 1 other laboratory
- > Revealed impurity of our 24,25(OH)₂D₃ material contributing to bias

Positive bias troubleshooting

Ongoing troubleshooting experiments for our positive bias

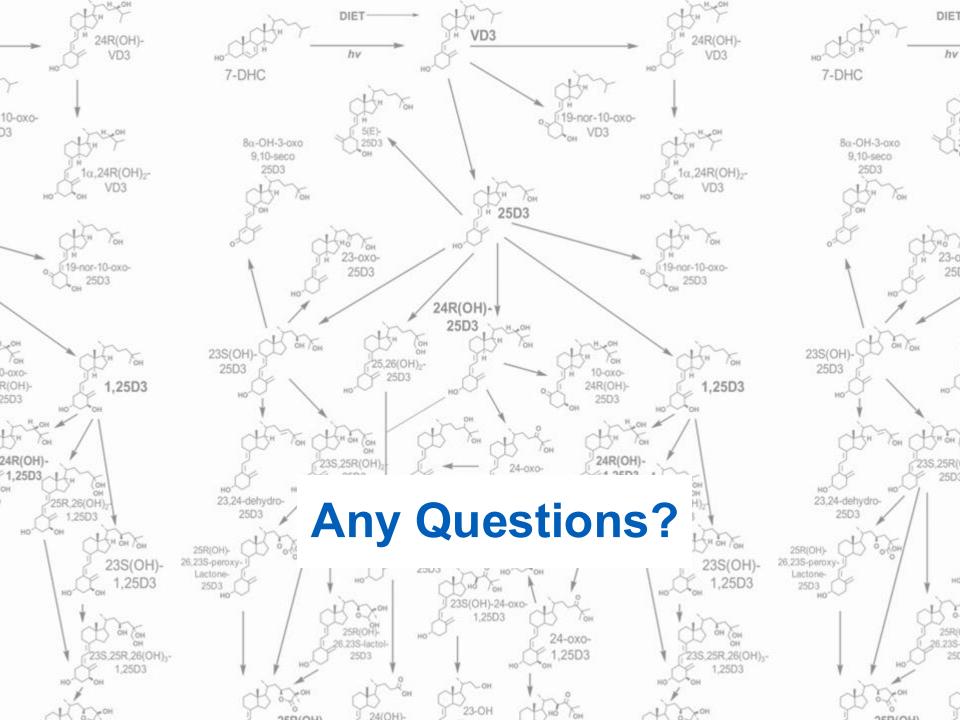
- Possible causes…
- Calibrator calculation errors
- Poor calibrator preparation
- Calibrator degradation
- Purity of primary materials
- Calibrator matrix commutability

Project Outcomes

Developed a high-sensitivity vitamin D metabolites LC-MS/MS method

- Tool for deficiency assessment
- CYP24A1-mediated hypercalcaemia e.g. IIH
- Bone metabolism, fracture risk, CKD

Partook in a NIST intercomparison study & contributed to the vitamin D standardization program


- Evidenced good intra & inter-assay precision
- Confirmed issues with method accuracy

Highlighted the issue of primary stock impurity and calibrator matrix-matching

- Performed troubleshooting experiments
- Positive bias remains an issue

Facilitated future DEQAS experimental studies on 24,25(OH)₂D

Once the assay is fully validated!

